

Coventor platform for MEMS design, – from device design and process development to system optimization

Chris Welham Application Engineering Manager Coventor Paris

Overview of Coventor

Founded in 1996 with a focus on software for MEMS Design

- Management team from MEMS and EDA
- Validated tools and library across a broad range
 - of designs and applications

Initial products for MEMS 'experts'

- Device design, modeling, simulation
- Process development

Established proven track record with MEMS market leaders

- Top tier MEMS device makers and specialized manufacturers
- 11 of top 15 MEMS companies* use Coventor

*Source: Yole Development (Feb. 2010): Top 15 MEMS companies = 80% of MEMS market

Coventor's Mission

Enable Our Customers to Grow Their MEMS Business

- Providing Essential Design Automation Software
- Setting the Standards for MEMS Design Methodology
- Partnering for Success

COVENTOR

A Diversity of Customers

Simulation of Complete Product

MEMS-based products are becoming more integrated

Increasing integration requires more verification by simulation

- More difficult or impossible to test individual components
- More chance of design errors in interconnect
- > More likelihood of undesirable coupling between components
- More sensitive to signal integrity and parasitics

Simulations must include more of the system

It is no longer sufficient to simulate individual system blocks

Overview of CoventorTools

Overview of CoventorTools

MEMS+

 MEMS behavioral modeling environment

MEMS+System & IC Challenge

- System, IC and layout designers require a MEMS component for their design environment
- No standard, automated methodology across the industry
- Disconnect between MEMS, System and IC design flows leads to long development cycles and high costs and minimal design reuse

Coventor MEMS+ for Matlab Simulink

COVENTOR

Coventor MEMS+ for Cadence Virtuoso

 The MEMS+ component library is build on top of three different mechanical model families

Add-on Models

MEMS+ is built on a comprehensive model library

- Beams & Suspensions (FEA Elements Bernoulli Beam Theory)
- Plates (FEA Elements Flexible MITC Plate Theory)
- Sensing Electrodes, (Conformal Mapping Theory)
- Comb Finger Drives (Conformal Mapping Theory)

COVENTOR

Model Verification Example

 All our electrostatic models are carefully verified against our BEM solver

BEM mesh model used as reference

ООО "Евроинтех" 2012

Horizontal Force (horizontal overlap 40 um)

ide 14

MEMS+ Design Examples 1

 MEMS+ builds on Coventor's parametric model library which has been proven on real-world designs...

Display Devices

PZE Actuated Mirror

MEMS+ Design Examples 2

 MEMS + builds on Coventor's parametric model library which has been proven on real-world designs...

Gyros (Angular Rate Sensors)

Capactive/PZE Microphone

Accelerometers

Overview of CoventorTools

000°"EB601447ex"22092

Overview of DESIGNER

DESIGNER[™] Layout Editor

Has standard layout editor functionality, plus MEMS-specific features

- Enter true curves (arcs, circles, splines) for efficient 3D solid modeling
- Save time by using hierarchical layout cells
- Parametric MEMS layout cell generators
- Import standard layout formats (GDS2, DXF)

Verify design before tape out

- Layer browser shows layer-to-mask mapping
- Built-in design rule checks
- Mask Viewer allows users see the masks exactly as they will be manufactured

DESIGNER[™] Process Editor

	C Process Editor - [C:\Main\	Coventor\WorkFi	les\BeamDesign\	Devices\beam.proc]		
	Eile Edit View Tools Wind	ows <u>H</u> elp				_ 8 ×
] 🗅 🧭 🔳 👗 🗈 I	ရှိ ကြင	¥ 12 ₽ √ε	×, N?		
	Number Step Name	Action	Layer Name	Material Name	Thickness 🔺	
	1 Substrate	SubstrateStep	Substrate	SILICON	10	En Process Steps
Descriptive	2.1 KOH Wet Etch	StraightCutStep				Deep Reactive Ion Etch (DRIE)
ston namos	2.2 Thomal Oxidation	StackMaterialStep	IsolationOxide	THERM_OXIDE	2	
step names	-2.3 Release HF Etch	StraightCutStep	<choose></choose>			Electroplating
	2.4 FDG Deposition Part	1 PlanarFillStep	EtchedisolationOxic	de PSG	0	🗄 🖅 Electroplating simplified
	-2.6 Vet Etch	2 StackMatenaistep StraightCutStep	<pre>choose></pre>	FBU	0.5	⊕ - Epi-SOI (Silicon-On-Insolator)
Customizable		ConformalShellSte	pNitride1	SIxNy_MetalMUMPs	0.35	
step hierarchy		StraightCutStep	<choose></choose>			ter e n implantation
	2.9 LPCVD	ConformalShellStep	p Poly	PULYSILICUN_MetalMUI	MPsU.7	
	mz.mRIE Etch	StraightCutStep	<choose></choose>			⊡- ⊡ Lift-off
	-2.12LPCVD	ConformalShellSte	p Nitride2	SIxNy_MetalMUMPs	0.35	🗄 편 LIGA
Usor customizablo	-2.13 RIE Etch	StraightCutStep	<choose></choose>			
	2.14 PDG Deposition	StraightCutStep		P56		CVD simplified
library of standard		oragneeroep	Conducer	-		APECVD
process steps (mapped						PECVD simplified
to solid modeling steps)	Step Name KOH Wet Etch					Belease Dru Etch
to solid modeling steps)	Action 🐴 Straight Cut					
				Quide1		
	C Cut Layer <choose></choose>		- Mask		<u> </u>	🗄 🖅 편 Silicon Fusion Wafer Bonding
	Depth Distribution	Scalar	- Photo	presist -		🗄 - 편 Silicon-On-Insulator (SOI)
	Distribution		-Side	ewall Angle(degrees)		🗖 Spin Casting
	Nominal Value	: 25 <u>E</u> d	lit Distr	ribution Scalar	•	
			Nor	pinal Value 35.3	Edit	
	Front Side				Earc	
	C Back Side		C Off	set		Thermal Oxidation simplified
			Dist	ribution Scalar	•	
			Nor	pinal Value 0	Edit	🗄 💼 Pre CoventorWare 2005 Steps
Access to			TV0II			
Company Kon silicon etchis used to form a 25µm deep tenchin the silicon substrate in the areas						E PostalMUMPs
standard	STANDARD					
foundry processes						li.

DESIGNERTM Solid Modeler

- 3D Solid Model Builder
 - Employs the 2D layout and fabrication process description to automatically build 3D models (ACIS SAT format)
 - Emulates real foundry steps, such as etching through multiple layers or partial backside etching

DESIGNER™ Preprocessor

Optimized for MEMs layers

Features include

- Cross-section planes
- Solid model partitioning & transforms
- Automatic layer merging to assure conformal meshes
- Part and face labeling for BCs
- Mesh generation
- Mesh quality checks

Tree expands to show only named or highlighted entities Same plane can be used as x-section, partition or symmetry.

COVENTOR

DESIGNER[™] Meshing

Choose from 5 optimized mesh generators that are ideal for MEMS solid models

- 1. Manhattan bricks (hexes) for near orthogonal geometry
- 2. Extruded bricks for multi-layered non-orthogonal geometry (choose from 3 algorithms)
- 3. Mapped meshing for 6-sided volumes
- 4. Tetrahedrals meshing for arbitrary shapes
- 5. Surface meshing (triangles and quadrilaterals) for BEM

Local refinement controls on all model entities (layers, parts, faces, edges, vertices)

Mesh quality checks

- Easy to read reports
- Highlighted display of "bad" elements

Import/export ANSYS meshes

Overview of ANALYZER™

- Comprehensive suite of 3D field solvers for MEMS
- Coventor solvers for thermo-mechanics, electrostatics, damping, piezo-resistance, piezoelectric effect
 - Hybrid FEM/BEM approach to coupled electromechanics
 - Gas damping, Anchor Damping, TED
- Simulation management
- Versatile results visualization

Overview of ANALYZER™

1. Comprehensive suite of 3D field solvers

Multi-physics with multi-core and 64-bit support

		MEMS 🍐 O Microfluidics
дη	MemElectro	(electrostatic and electroquasistatic)
իհ	MemElectro	(electrostatic and electroquasistatic)
Ц	MemMech	(mechanical, thermomechanical and piezoelectric)
K	CoSolveEM	(coupled electromechanical - static)
₽¥	HarmonicEM	(coupled electromechanical - frequency domain)
+ -	MemPZR	(piezoresistance)
]00	MemHenry	(electrical inductance and resistance)
ᆊ″	SpringMM	(electrostatic, mechanical or electromechanical)
Ļ	DampingMM	(squeezed-, slide-film or free-space fluid damping)
凎	InertiaMM	(proof mass or plate inertia)

2. Simulation management

Relational database

and the second se							
tul_ring_wedge tul_ring tul_ring_reaty tul_ring_reaty 1.0		🔋 Job Queue					
guarter_ring 1.0	÷	Name Dat	e Added Module Name	Status			
Ing_only half_ring_only half_ring_only 0.5 tol_ring_with_tethers hal_ring_with_tethers and electrodes full_ring_with_tethers and electrode.		🛃 modal analysis 628 10/17/10 - 1	10:24:02 MemMech	Completed			
		Cosolve for 10V 10/17/10 -	10:25:11 CoSolveEM	Running			
Properties		A V					
Meshed Model guarter_r	Properties Progress						
Created	reated 05/13/20	Analysis Name	Cosolve for 10V RingResonator.mps				
Comment 2.wn Surface Triangles 429 Layout Topcel surface Materials Database mpd	2-way sy	Pillalysis Ivallie					
	429	MPS File					
	sunknow	Module Name	CoSolveEM				
	on than	Comment					
OK Can	cel						
		<u></u>	2 jobs: 1 finished				
	Auf-rog - ready to a fact or row of the automatic and a fact of the automatic and	AL-ray and the second sec	Ad_rog_velv dd_rog_velv dd_rog_velvvelvelvelvelvelvelvelvelvelvelvelvel	Multing Multing Multing, rendy 10 Name Trid, ring, rendy 10 Multing, rendy 10 Multing, rendy 10 Multing, rendy 1			

Visualizer

3. Postprocessing

Convenient pre-defined tables and custom queries

🕼 modeDomain						
	Frequency	Generalized Mass	Damping	k		
1	6.374773E08	5.034922E-13	0			
2	6.375334E08	5.350629E-13	0			
3	6.379169E08	8.11114E-13	0			
4	6.380271E08	9.855608E-13	0			
ОК						

🖸 Analysis modal analysis 636.5-638 MHz 🛛 🔀						
Solver: MemMech						
Model/Mesh: full_ring_really						
Results Summary						
Tables modeDomain						
Custom Query						
Load Result All results						
Close						
	I					

CoventorWare Compatibility

MEMS Examples in ANALYZER[™]

Accelerometer (Coupled Electro-Mechanics, Gas Damping)

FBAR (Piezoelectric and Mechanical Effects)

RF Switch (Coupled Electro-Mechanics, Gas Damping)

ANALYZER[™] Examples MEMS

COVENTOR

Energy Harvester

Experimental Validation of Aluminum Nitride Energy Harvester Model with Power Transfer Circuit

S. Matova1, D. Hohlfeld1, R. van Schaijk1, C. J. Welham2, S. Rouvillois2 1 IMEC / Holst Centre, The Netherlands,

2Coventor, France

ANALYZER[™] Examples MEMS

Resistive Bolometer

100nW power absorbed by the detector: temperature gradient in the pixel is simulated in vacuum at temperature of 300 K

Diode Bolometer

Overview of CoventorTools

Material Properties Database and Process Editor

SEMulator3D Virtual prototyping

Coventor is the leader in MEMS design automation software

Applying our technology to modeling MEMS and semiconductor processes in 3-D

What is Virtual Fabrication?

What is SEMulator3D

A modeling tool used by leading MEMS and semiconductor fabs

GDSII Layout

Process Description

3D Modeling Engine

builds voxel models by applying a sequence of primitive operations

Voxels are 3D pixels

Customizable to any process technology

Visualization

SEMulator3D follows a process "recipe" to emulate the fabrication sequence step-bystep:

COVENTOR

- Process recipe is composed of primitives from a standard library
- Primitive steps can be configured (calibrated) to match fab
- □ Input is *parameterized*
- Parameters are *geometric*; process setup is easy and fast

SEMulator3D can model **any** process technology.

🖗 Process Editor - [D:/work/SEMulator3D/FinFet-32nm/FinFet_128_demo.vproc]							
Elle Edit View Tools Windows Help							
D 🚰 🗔 🚜 ங 🗙 🦻 🥲 🗟 🗃 🕏 🧭							
Number	Step Name	Material Name	Thickness	Mask Name	Depth	Mask C 🔺	
/	Sup Resist	RESIST			55		Process Library
	Create Fins				33		🖃 🚰 Modeling Steps
	Create Fills				FF		···· 🗾 Comments
9.1	Create Fins				20		Cross Section
10	Grow Base Ovide		0.0		0		···· 🔁 Custom Python
11	CVD High-K Cate Dielectric	HfO2	2				🔁 Deposit
12	PVD TiN	TIN	12				Electroplate
13	Deposit PolySi	PolySi	05				- Etch
14	Planarize PolySi	i oryon	55				
15	Deposit Sin Hard Mask	SiNHardMask	100				Expose Material
16	Pattern SiN Hard Mask	on a for on oak	100	Gate	110		Expose Material
17	Gate Etch (Anisotropic)			Gute	150		
	Denosit Ext Spacer	SiNSpacer 1	10		150		···· 🔛 Generate Mesh
19	Etch Ext Spacer	on topucer 2	10		85		···· Grow Oxide
20	Spin Resist	Resist	20		0.5		···· 💷 Implant
20	Expose Resist nMOS-A	Resist	0	nMOS-a			
21	Extension Implant nMOS-A	Realar	14	111103-0			······································
22	Strin Desist	Decist					
23	Soin Perist	Decist	20				
27		P 1	20	NOC 1		<u> </u>	Modeling Parameters
•							Planar Deposit
						•	···· Planarize
Step Name	PVD TIN					_	
Action	- Deposit						···· 😪 Replace Material
Action	Deposit						
Wafer to	Wafer1 💌	D	daterial TiN			-	
operate upo							
Mask Name	<choose></choose>	<u>Thickne</u>	ess				Process Steps
			tion Scal	ər			
Mask Field	• Dark C Light	Distribu		Cii		-	
		Nomina	I Value 12		Ed	it	
🔽 Top sid	e						
Bottom side		Anisot	ropy (vertica	il/lateral) ——	+ Save Model Steps		
) Dottom blac		Distribu	Distribution Diecewise				⊞ • 🔚 MEMS steps
		Distribu					Spin Resist
	Points	(50,0	5),(126,1)	Export Geometry			
				led	⊕		
Skip this	Skip this step if specified mask has no layout data www.choosestepsilon.com						

SEMulator3D Process Editor

SEMulator3D Library of Standard Process Steps

- ✓ Conformal deposits
 CVD, PECVD, HDPCVD, etc
- ✓ Directional deposits
 Evaporation, sputtering
- ✓ Wet etches
 Including selectivity

COVENTOR

- ✓ Dry etches
 Plasma-based etches, RIE,
 DRIE, etc
- ✓ Growth
 - Oxide growth Epitaxy (some) Salicide Electroplate
- ✓ Miscellaneous
 СМР
 Lift-Off
 OOO "Евроинтех" 2012

Powerful 3D Visualization

With the SEMulator3D Visualizer, you can

MEMS Motor using Metal MUMPS process

- □ Interact with a 3-D view
- Create and animate dimensionally accurate cross sections
- Color by material or by electrical connectivity
- Hide/show materials or electrical nets
- Take measurements
- Exaggerate scale in x,y or z
- Capture 3-D images
- Animate the fabrication steps

COVENTOR

Example: MEMS DLP Mirror

DLP Process Sequence (above) and release etch (below).

DLP mirror based on a design by Texas Instruments. Note accurate representation of tether attachments!

Example: SiGe Accelerometer

Figure 3: SEM view of the fabricated poly-SiGe lateral

A COMB BASED IN-PLANE SIGE CAPACITIVE ACCELEROMETER FOR ABOVE-IC INTEGRATION

L. Wen¹, K. Wouters¹, L. Haspeslagh², A. Witvrouw², R. Puers¹ ¹ESAT-MICAS, Katholieke Universiteit Leuven, Leuven, Belgium ²IMEC, Kapeldreef 75, Leuven, Belgium +

Stopper for SiGe Accelerometer

Figure 6: SEM view over the positioning of the shock protectors of the fabricated poly-SiGe lateral capacitive accelerome-OOQer"Евроинтех" 2012

Demo IMEC's SiGe

Who needs Virtual Fabrication

Process Development

COVENTOR

- Model the full fabrication sequence
- Prototype process changes before implementing them
- Predict process problems
- □ Save wafers (\$\$\$) and time

Foundry Services

- MEMS Design validation before fabrication
- Communication with customers

MEMS Designers

- Test manufacturability before tapeout
- Silicon-accurate models for FEM simulation
- Communication with fab

Process Documentation & Training

Add realistic 3D graphics for more effective documentation

Design Validation

Foundry Service companies use SEMulator3D to:

- Communicate design and process information with customers.
- □ Validate designs before fabrication.
- □ Efficiently model any design changes.
- □ Analyze and improve yield.
- Allow customers to build 3D models with SEMulator3D via PDK.

"Emulation also gives engineers the ability to do virtual test runs to verify that a device design is compatible with the manufacturing process, and that the 3D result is as expected. Moreover, design mistakes and shortcomings can be identified, even if they are compatible with 2D layout rules."

"The benefits of visualizing accurate 3-D virtual MEMS prototypes include increased probability of achieving first-time success by minimizing analysis errors, increased design efficiency by identifying process errors early, avoiding undesired effects that would have reduced yield, and more efficient communication between design engineers and outside groups."

Baolab – Design review for PolyMUMPS with SEMulator3D

"We have now established a strict submission procedure within Baolab for all the foundry runs, and one imperative step is to simulate the whole die micromachining process using SEMulator3D and to visualize the 3D result using the mechanical coloring scheme, and this must be included in the final report."

Green indicates Oxide not removed despite non-violation of design rules

ООО "Евроинтех" 2012

COVENTOR

Slide 46

COVENTOR

SEMulator3D Geometry Export

SEMulator3D Reader

- An open version of SEMulator3D Viewer that anyone can download from Coventor's website
- SEMulator3D users can distribute 3D models to anyone.
- □ Encourage your prospects to try it out!

Mesh Generation

- SEMulator3D Meshing creates accurate surface and volume meshes for simulation:
 - Thermal
 - Mechanical stress/strain
 - Diffusion
 - Electrical parasitics
 - Multi-Physics (MEMS)
- SEMulator3D meshes can be used with CoventorWare Analyzer and 3rd-party solvers

ООО "Евроинтех" 2012

Slide 47

Design Kits

Design your MEMS in stable well-known manufacturing processes using CoventorWare development platform

Data available:

- Specific material property databases
- Library of foundry specific process emulation files
- Layout template file incl. DRC
- Case studies and tutorials

COVENTOR

Library of Standard Foundry Processes

- **DALSA** post-processing on CMOS
- **IMEPKU Polysilicon**
- **PolyMUMPS 3-Layer Polysilicon Surface**
- SOIMUMPS SOI
- **MetalMUMPS Electroplating**
- Tronics 60µm SOI-HARM epitaxial SOI
- MultiMEMS Piezoresistive Bulk
- SINTEF MOVEMEMS PZT (beta)

VENTED CAVIT

Overview of CoventorTools

Overview of CoventorTools

Slide 52

Solution for MEMS Resonator Design and Integration

MEMS Resonators for quartz replacement or RF applications

Electromechanical

• Piezoelectric

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 12, DECEMBER 2004

Series-Resonant VHF Micromechanical Resonator Reference Oscillators

Yu-Wei Lin, Student Member, IEEE, Seungbae Lee, Student Member, IEEE, Sheng-Shian Li, Student Member, IEEE, Yuan Xie, Student Member, IEEE, Zeying Ren, Member, IEEE, and Clark T.-C. Nguyen, Senior Member, IEEE

COVENTOR

Specification Sheet

COVENTOR

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Output Frequency Range	f	1	-	110	MHz		
Frequency Stability	F_stab	-20	-	+20	PPM	Inclusive of: Initial stability, operating temperature, rated pov	
		-25	-	+25	PPM	supply voltage change, load change, shock and vibration.	
	-	-30	-	+30	PPM	± 20 PPM available in extended commercial	
		-50	-	+50	PPM	temperature only	
Aging	Ag	-1.0	-	1.0	PPM	1st year at 25°C	
Operating Temperature Range	T_use	-20	-	+70	°C	Extended Commercial	
		-40	-	+85	°C	Industrial	
Supply Voltage	Vdd	1.71	1.8	1.89	V		
		2.25	2.5	2.75	V		
		2.52	2.8	3.08	V		
		2.97	3.3	3.63	V		
Current Consumption	ldd	_	6.7	7.5	mA	No load condition, f = 20 MHz, Vdd = 2.5 V, 2.8 V or 3.3 V	
	İ	-	6.1	6.7	mA	No load condition, f = 20 MHz, Vdd = 1.8 V	
Standby Current	I_std	_	2.4	4.3	μA	ST = GND, Vdd = 3.3 V, Output is Weakly Pulled Down	
		-	1.2	2.2	μA	ST = GND, Vdd = 2.5 or 2.8 V, Output is Weakly Pulled Do	
	Ì	-	0.4	0.8	μA	ST = GND, Vdd = 1.8 V, Output is Weakly Pulled Down	
Duty Cycle	DC	45	50	55	%	All Vdds. f <= 75 MHz	
		40	50	60	%	All Vdds. f > 75 MHz	
Rise/Fall Time	Tr, Tf	-	1	2	ns	20% - 80% Vdd=2.5V, 2.8V or 3.3V, 15pf load	
		-	1.3	2.5	ns	20% - 80% Vdd=1.8V, 15pf load	
Output Voltage High	VOH	90%	-	-	Vdd	IOH = -4 mA (Vdd = 3.3 V) IOH = -3 mA (Vdd = 2.8 V and Vdd = 2.5 V) IOH = -2 mA (Vdd = 1.8 V)	
Output Voltage Low	VOL	-	-	10%	Vdd	IOL = 4 mA (Vdd = 3.3 V) IOL = 3 mA (Vdd = 2.8 V and Vdd = 2.5 V) IOL = 2 mA (Vdd = 1.8 V)	
Output Load	Ld	-	-	15	pF	At maximum frequency and supply voltage. Contact SiTime higher output load option	
Input Voltage High	VIH	70%	-	-	Vdd	Pin 1, OE or ST	
Input Voltage Low	VIL	-	-	30%	Vdd	Pin 1, OE or ST	
Startup Time	T_osc	-	-	10	ms	Measured from the time Vdd reaches its rated minimum va	
Resume Time	T_resume	-	3.0	4	ms	Measured from the time ST pin crosses 50% threshold	
RMS Period Jitter	T_jitt	-	-	4.0	ps	f = 75 MHz, Vdd = 2.5 V, 2.8 V or 3.3 V	
		-	-	6.5	ps	f = 75 MHz, Vdd = 1.8 V	
RMS Phase Jitter (random)	T_phj	-	0.6	-	ps	f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz, VDD = 2.5 V, 2.8 V, or 3.3 V	
		-	0.8	-	ps	f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz, VDD = 1.8 V	

SiTime quartz replacement electromechanical oscillator

How do we design one?

General design:

- Find geometry that resonates at desired frequency
- Array devices so impedance (motional resistance) is low so it connects to circuits effectively (RF 50 ohm or good for sustaining amplifier)
- Drive and sense electrostatics
- Reliability: Stress relief
- Package effects
- Frequency stability
 - Effect of temperature, stress, packaging(!) to make compensating circuit?

Phase noise reduction (most challenging for MEMS!):

- High Q (low loss)
 - Vacuum sealed: Thermoelastic damping loss and anchor loss
- Power handling (how high a voltage can I drive it before it goes nonlinear?)

Initial design: What should the shape be? (From SiTime Patent 7227432)

2) United States Patent

Coventor's MEMS+ for design tradeoffs, optimization, electrical-in, electrical-out, and frequency stability

And how will I array them?

For better power handling and lower impedance

All are possible with MEMS+

Coupling Beam Length impact on frequency

COVENTOR

Coventor MEMS+ C.I.m. Coventor MEMS+ C.I.m. ManeraDatabase From ManeraDatabase From Mathematic Correctors Mathematic Correctors Mat	All/support/ResonatorCollateral/Res consistent ↑ provate ♦ consist	<pre>ClimatiNupperNessonatorCollateralisweepCouplingBeamArray.m* Text Go Cd Toob Debug Deskup Window Heb i</pre>	Use M to swe Length modal Also v depen	AEMS+ 2.1 with Matla eep the Coupling Bea h and compute the frequencies view spurious mode adency	ab am
	Coupling Beam Length	100 um	200 um	300 um	
	Frequency	2.28MHz	2.18MHz	2.10MHz	

Anchor Placement

Anchor where resonator doesn't move (nodal points). But it does rotate there.

3.28MHz – much stiffer (was 2.28MHz) and the anchors interfere with the mode (squares are not moving symmetrically)

Anchor Design

A 'zero impedance' anchor: Choose support beam dimensions so the resonator frequency is its first mode of twist about z

- Doesn't interfere with desired resonator mode
- Reduces stress on anchor, and thus reduces anchor loss

Fig. 3. Schematic of an EWGR support beam, equating it to a beam with simple-fixed boundary conditions.

51 MHz -- 25x too high for this 2MHz resonator

Optimum Support Beam

Quarter wavelength beam and resonance frequency both depend on coupling beam length. Where is optimal length to make the support beam ¼ wavelength of the array's resonance frequency?

Zero Impedance Anchor

COVENTOR

Run single MATLAB script to

- •Specify mode <u>shape</u> of interest
- •Sweep over Coupling Beam Lengths

•Automatically extract mode frequency for mode shape of interest (even if mode number changed)

•Plot

Frequency Stability with Temperature

COVENTOR

Thermal Expansion

$$\alpha_{TCE} = \frac{1}{L} \frac{\partial L}{\partial T} = 2.5 \times 10^{-6} / K$$

Elastic Modulus temperature dependence

$$E = E_0 (1 + \alpha_{TCF} (T - T_0))$$
$$\alpha_{TCF} = \frac{1}{E} \frac{\partial E}{\partial T} = -52 \times 10^{-6} / K$$

Effect of both on frequency:

Process Variation Effects on Frequency

COVENTOR

Coupled Mechanical, **Electrical and IC**

COVENTOR

(simplified for illustration)

ООО "Евроинтех" 2012

Model is immediately available in Cadence Virtuoso and **Mathworks** Simulink and MATLAB.

No extraction or equivalent circuits to create.

Captures multiple modes.

Parametric

cādence

Fully nonlinear

Electrostatic spring softenting

MEMS-IC Electronic Output

MEMS+ model is still fully parametric and can show output electrical response to input electrical stimulus. Below we see dependence on Temperature and DC Bias

COVENTOR

Production Design

Coventor's Analyzer tool suite

- Stress Relief
- Loss mechanisms to improve Q
 - Thermoelastic Damping
 - Anchor Loss
- Package Effects

Exploring designs for Stress Relief

COVENTOR

Effect of details on mechanics

Exploring designs for Thermo-elastic Damping

	No Perforations	5u X 40u@Center	3 uniformly distributed 5u Square holes	
Q	26550	33083	26800	
Frequency	2.41MHZ	2.48MHZ	2.42MHz	

What does anchoring do to the mechanical response? Small substrate added below resonator

	Freq	Amplitude At 2.300MHz	Strain Energy Resonator	Strain Energy Substrate (green)	Strain Energy Substrate (red)
No Substrate	2.324MHz	0.265	9.32e5	0	0
Substrate	2.320MHz	0.308	12.9e6	63.1	0.39

Adding the substrate allows anchor to twist slightly which very slightly lowers the resonance frequency, but also allows a higher amplitude of oscillation which improves the strain energy. Note the twisting generates strain directly below the anchor (green block) and little elsewhere in the

ООО "Евроинтех" 2012 substrate

Anchor loss

Magnitude of

displacement

field in

substrate

showing

outgoing

The small energy present in the larger substrate is the origin of anchor loss

Re(displacement X)

Use absorbing boundary conditions to treat substrate as infinite and compute lost energy

acoustic wave bing boundary to treat substrate as

Q = 74e6 without thermoelastic damping

So thermoelastic damping of 26,000 on previous slides is the dominant damping mechanism! ООО "Евроинтех" 2012

How do asymmetries affect anchor loss?

Any asymmetries from process or design won't perfectly "twist" the anchor. On the right, we drive it asymmetrically and generate both a compressive and shear wave which lowers Q

Symmetric drive

Pull and push each square

ООО "Евроинт ex = 2742600,000

Asymmetric drive

Push 1 side only

Q = 863,000

Package effects

When package warps with temperature, anchor points spread apart or come closer causing stress, which changes frequency (or offsets capacitances)

(Simulations not completed)

Coventor's MEMS+ and Analyzer tools work together to take resonators from initial design ideas to production.

General design:

- Find geometry that resonates at desired frequency
- Array devices so impedance (motional resistance) is low so it connects to circuits effectively (RF 50 ohm or good for sustaining amplifier)
- Drive and sense electrostatics
- Reliability: Stress relief
- Package effects (TO DO)

Frequency stability

• Effect of temperature, stress, packaging(!) to make compensating circuit?

Phase noise reduction (most challenging for MEMS!):

- High Q (low loss)
 - Vacuum sealed: Thermoelastic damping loss and anchor loss
- Power handling (how high a voltage can I drive it before it goes nonlinear?) (TO DO)

Coventor Solutions for Vibratory Gyroscopes Design and Integration

Applications of Gyroscopes

COVENTOR

Overview

Introduction

- Applications of MEMS vibratory gyroscopes
- Typical gyroscope specifications
- Coventor's Value:
 - Design and integration challenges
- An example showing use of Coventor's tools
 - a single-axis gyroscope from the Univ. of British
 Columbia
 - Frequency response and electrostatic spring softening for the matched-mode condition
 - Simulation of sensitivity and cross-axis sensitivity
 - Damping estimation

Conclusions

© Coventor Inc. 2011 ООО "Евроинтех" 2012

Spec sheet for commercial InvenSense IDG-650

Linear Acceleration Effect

Any axis

Gyroscope specs

that can be simulated with Coventor tools

ООО "Евроинтех" 2012

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
SENSITIVITY						
Full-Scale Range		±2000		°/s		
	At X4.5OUT and Y4.50	UT		±440		°/s
Constitution				0.5		
Sensitivity	At X-OUT and Y-OUT			0.5		mv/*/s
	At X4.5001 and ¥4.50	01		2.27		mv/*/s
Initial Calibration Tolerance	At X-OUT and Y-OUT			±6		%
Calibration Drift Over Specified Temperature	At X-OUT and Y-OUT			±10		%
Nonlinearity	At X-OUT and Y-OUT,	Best Fit Straight Line		<1		% of FS
Cross-axis Sensitivity		-		±1		%
ZERO-RATE OUTPUT (ZRO)						
Static Output (Bias)	Factory Set			1.35		v
Initial Calibration Tolerance		With Auto Zero		±20		
	Relative to VREF	Without Auto Zoro		+150		mV
ZRO Drift Over Specified Temperature	Highlighted pa	rameters are sho	own in t	he follov	ving slie	des ⁻
Power Supply Sensitivity	@ 50 Hz			10		°/sec/V
FREQUENCY RESPONSE						
High Frequency Cutoff	Internal LPF -90°			140		Hz
LPF Phase Delay	10Hz			-4.5		•
MECHANICAL FREQUENCIES						
X-Axis Resonant Frequency			20	24	28	kHz
Y-Axis Resonant Frequency			23	27	31	kHz
Frequency Separation	X and Y Gyroscopes			3		kHz
NOISE PERFORMANCE Total RMS Noise	Bandwidth 1Hz to 1kHz	, At X-OUT and Y-OUT		0.3		mV rms
POWER ON-TIME						
Zero-rate Output	Settling to ±3°/s		50	200	ms	
ULL ¹	1005					
NUII	-40° to $\pm 105^{\circ}$		2.2	25 2	78 IV	

0.1

°/sec/g

An Example: A single-axis Gyroscope

Single proof mass gyroscope fabricated in SOIMUMPs technology

• Thickness: 25 μm, Minimum Gap size: 2 μm

Measure Angular Rare around Z axis

Reference: M.Sharma, E.H.Sarraf, E.Cretu (The Univ. of British Columbia), "Parametric Amplification/Damping in MEMS Gyroscopes", MEMS 2011

Coventor MEMS+ for Matlab and Cadence

COVENTOR

Electro-Mechanical Modeling in MEMS+

Mechanical Frequencies

COVENTOR

Initial Design – Drive/Sense modes have a frequency split

• Drive and sense mode frequencies can be compensated by adjusting the DC bias voltage on the sensing or actuation comb drives

ООО "Евроинтех" 2012

Deformed shapes are exaggerated accordingly

Parametric Study Q factor vs. Damping Coefficient

Q factors are measured as a ratio of AC to DC amplitudes

Damping Coefficients in actuation and sensing are estimated and assigned to rigid plate (Highlighted in yellow)

Simulated in MATLAB

COVENTOR

Parametric Study for mode-matched condition

Vary a design parameter, Beam Length in Y, to measure resonant frequency change

Mechanical stimuli are applied

Next, set the Beam Length = 407 μm , and vary Bias Voltage, measure resonant frequency shift

Resonant Frequency change in Drive/Sense-Dir with Bias Voltage

Sensitivity and Cross-Axis Sensitivity for Capacitive Sensing

Cross-Axis Sensitivity vs. Sidewall Angle

ООО "Евроинтех" 2012

Other effects such as **misalignment** (In-Plane rotation Angle) or **anisotropic elasticity** can be included

Linear Acceleration Effect

ООО "Евроинтех" 2012

Measure linear acceleration stability, Reject external vibrations Sample experimental data below from a source

Apply sinusoidal acceleration (1g) to see acceleration stability over frequency

Capacitance change is observed in y-axis stimulus Gyroscope register an incorrect reading when subjected to a linear acceleration in the same direction as Coriolis force to be sensed.

Simulated in MATLAB Transient Analysis

Gas Damping Analysis - System Decomposition

COVENTOR

Contributions to x or y-direction gas damping of the gyroscope (Note: other damping mechanisms are likely negligible at low frequencies)

© Coventor Inc. 2011

ООО "Евроинтех" 2012

Total fluidic damping coefficients are x-dir: 1.30e-5 (N/(m/s)) y-dir: 4.36e-5 (N/(m/s))

Slide 13

Cadence Schematic Design

Non Linear Response

COVENTOR

V1 = 13.1 + Vac sin(wt)

V2 = 13.1 - Vac sin(wt)

Out of phase voltages on stators resonates proof mass in Y direction

What amplitude of drive, Vac, leads to nonlinear frequency response?

30 DOF system, Q=1600, f0 = 7014 Hz

MEMS+ Matlab integration

COVENTOR

Use FrequencyHysteresis module to compute nonlinear frequency response for

Vac = 1, 1.5, 2, 2.5, 3 Volts

Mechanical nonlinearity 'bends' curve to the right in typical Duffing effect.

Electrostatic nonlinearity would bend curve to left, but since motion is parallel to fingers, electrostatics remained comparatively linear.

Total CPU time to compute these 5 curves: 1100 seconds

Conclusions

- <u>Sensitivity</u>
- Cross-axis sensitivity
- Full-scale range and Nonlinearity
- Linear acceleration effect and shock response
- Noise

MEMS+ is ideal for design exploration and optimization

- Use CoventorWare to verify MEMS+ results
- Some physics require CoventorWare field solvers
 - Gas damping of comb drives
 - Mechanical details such as filets and anchors

COVENTOR

Filets at connections

Solution for MEMS Accelerometer Design and Integration

Overview

Introduction

- Applications of MEMS accelerometers
- Typical accelerometer specifications

Simulation of key accelerometer specs using Coventor tools

- A single-axis accelerometer in IMEC's SiGe process
 - Frequency response and sensitivity of design
 - Damping Analysis
 - Harmonic Analysis
 - Verification with FEA
 - Transient response under a g pulse
 - Simulation of self-test functionality

Comparison between simulation and experimental results

Applications of MEMS accelerometers

COVENTOR

ООО "Евроинтех" 2012

Spec sheet single-axis accelerometer (ADXL78)

Coventor tools can simulate these specs

		Mode	No. Al	022279	Model No. AD22280			Model			
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SENSOR											
Output Full-Scale Range	l _{ouτ} ≤ ±100 μA	37			55			70			g
Nonlinearity			0.2	2		0.2	2		0.2	2	%
Package Alignment Error			1			1			1		Degree
Cross-Axis Sensitivity		-5		+5	-5		+5	-5		+5	%
Resonant Frequency			24			24			24		kHz
Sensitivity, Ratiometric (Over Temperature)	V _{DD} = 5 V, 100 Hz	52.25	55	57.75	36.1	38	39.9	25.65	27	28.35	mV/g
OFFSET											
Zero-g Output Voltage (Over Temperature) ²	$V_{OUT} - V_{DD}/2,$ $V_{DD} = 5 V$	-200		+200	-150		+150	-150		+150	mV
NOISE											
Noise Density	10 Hz – 400 Hz, 5 V		1.1	3		1.4	3		1.8	3.5	mg/√Hz
Clock Noise			5			5			5		mV p-p
FREQUENCY RESPONSE	2-pole Bessel										
–3 dB Frequency		360	400	440	360	400	440	360	400	440	Hz
-3 dB Frequency Drift	25°C to T _{MIN} or T _{MAX}		2			2			2		Hz
SELF-TEST											
Output Change (Cube vs. V _{DD}) ³	$V_{DD} = 5 V$	440	550	660	304	380	456	216	270	324	mV
Logic Input High	$V_{DD} = 5 V$	3.5			3.5			3.5			V
Logic Input Low	$V_{DD} = 5 V$			1			1			1	V
Input Resistance	Pull-down resistor to GND	30	50		30	50		30	50		kΩ
OUTPUT AMPLIFIER											
Output Voltage Swing	l _{out} = ±400 μA	0.25		$V_{DD} - 0.25$	0.25		$V_{DD} - 0.25$	0.25		$V_{DD} - 0.25$	V
Capacitive Load Drive		1000			1000			1000			pF
PREFILTER HEADROOM			280			400			560		g
CFSR @ 400 kHz			5			4			3		V/V
POWER SUPPLY (VDD)		4.75		5.25	4.75		5.25	4.75		5.25	V
Functional Range		3.5		6	3.5		6	3.5		6	V
Quiescent Supply Current	$V_{DD} = 5 V$		1.3	2		1.3	2		1.3	2	mA
TEMPERATURE RANGE		-40		+105	-40		+105	-40		+105	°C

IMEC single-axis accelerometer

Process & design data provided for IMEC SiGe process

University reference available, design files available from workshop

Figure 1: Schematic view of the poly-SiGe lateral capacitive accelerometer with self-testing electrodes and shock protectors

Figure 2: Fabrication process flow of the poly-SiGe lateral capacitive accelerometer

Reference: L. Wen, *et al*, "A Comb Based In-Plan Capacitive Accelerometer for Above-IC Integration, U. Leuven and IMEC, Belgium, 2010

Layout of single-axis accelerometer

COVENTOR

Sensor specs

	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	SENSOR											
(Output Full-Scale Range	l _{oυτ} ≤ ±100 μA	37			55			70			g
l	Nonlinearity			0.2	2		0.2	2		0.2	2	%
	Package Alignment Error			1			1			1		Degree
	Cross-Axis Sensitivity		-5		+5	-5		+5	-5		+5	%
\square	Resonant Frequency			24			24			24		kHz
	Sensitivity, Ratiometric (Over Temperature)	V _{DD} = 5 V, 100 Hz	52.25	55	57.75	36.1	38	39.9	25.65	27	28.35	mV/g

Resonant frequency modal frequencies and shapes

Output Range MEMS+ validated with FEA

Input g Vs Y displacement of proof mass

Input g Vs normalized capacitance of sensing comb fingers

Normalized Capacitance = $\frac{C_1 - C_2}{\dots}$

 $C_1 + C_2$

Fluidic damping analysis: system decomposition

Stokes solver for damping between sense comb fingers

Stokes solver for damping between self test comb fingers

ООО "Евроинтех" 2012

Key simulation parameters Ambient gas: N₂ Pressure: 1 bar Temperature: 300K

Reynolds solver for slide damping

(Note: other damping mechanisms are likely negligible at low frequencies)

Fluidic damping analysis: total damping coefficient

COVENTOR

	Damping Coefficient					
	(N/m/s)					
Proof Mass	2.45E-07					
ST Structures	1.83E-07					
Comb Fingers	2.02E-05					
Total	2.06E-05					

Harmonic analysis with damping

ООО "Евроинтех" 2012

COVENTOR

Transient response under g pulse

COVENTOR

(-46.3, 112, 7)

5e-10 -5e-10 -1e-09 -1.5e-09 -2e-09

MEMS + IC

COVENTOR

ООО "Евроинтех" 2012

Sensitivity: $\sim 18.5 \text{ mV/g}$ with Vdd = 5V

Self-test specification

NOISE											
Noise Density	10 Hz – 400 Hz, 5 V		1.1	3		1.4	3		1.8	3.5	mg/√Hz
Clock Noise			5			5			5		mV p-p
FREQUENCY RESPONSE	2-pole Bessel										
-3 dB Frequency		360	400	440	360	400	440	360	400	440	Hz
–3 dB Frequency Drift	25°C to		2			2			2		Hz
	Tmin or Tmax										
SELF-TEST											
Output Change (Cube vs. V _{DD}) ³	$V_{DD} = 5 V$	440	550	660	304	380	456	216	270	324	mV
Logic Input High	$V_{DD} = 5 V$	3.5			3.5			3.5			V
Logic Input Low	$V_{DD} = 5 V$			1			1			1	V
Input Resistance	Pull-down resistor to GND	30	50		30	50		30	50		kΩ

How much y-displacement due to 5V bias on self-test comb?

 Since we know sensitivity (mV/g) and y-displacement vs. acceleration, this will give us the output change in mV

Self test : Cadence simulation results

COVENTOR

Y-dir displacement of Proof mass

Voltage on top self test comb is swept from 0 to 5V Zero g is applied on the proof mass

Simulation and experimental results

The static CV results were plotted and compared. The left figure has both experimental and simulation data, and the right figure shows the difference in terms of percentage number for each voltage point.

Coventor Solutions for Vibrational Piezoelectric Energy Harvester Design and Integration
Overview

Introduction

- New applications for MEMS Energy Harvesters
- Energy Harvesting Principles
- Key characteristics
- Design and integration challenges

An example showing use of Coventor's tools

- Energy Harvester and conditioning circuit design
- Validation with measures
- Packaging

Conclusions

3

Applications of miniaturized Energy Harvesters

Powering Distributed Wireless Sensor Nodes

Powering Implanted Sensors for Health Monitoring

Recharging batteries

Monitoring Tire Pressure

* IDTechEX (England)

"-The Energy Harvesting Market will growto 4.4 billion dollars in 2020 from 650 million dollars in 2010

* Innovative Research and Products (USA)

"The market will expand 73.6% to 1.254billion dollars in 2014 from 79.5 million dollars in 2009"

Source: Hi-Globe website

© Coventor Inc. ООО "Евроинтех" 2012

Autonomous wireless temperature sensor Source: Holst center

Energy Harvesting Principles

COVENTOR

Power sources:

Vibrations Thermal RF waves Light Wind

Harvesting methods:

Piezoelectric Electromagnetic Electrostatic Thermoelectric Pyroelectric Photovoltaic

Source: Hi-Globe website

© Coventor Inc. ООО "Евроинтех" 2012

© Coventor Inc. ООО "Евроинтех" 2012

Vibration Energy Harvesting Efficiency

Piezoelectric:

Piezoelectric material has its dynamical strain converted into voltage difference

Electrostatic:

Capacitive harvesting with geometrical variations inducing voltage difference

Electromagnetic:

Inductive behavior thanks to dynamical oscillations of magnets inducing electric current in coils

Type

Equation Maximum Maximum $\sigma_{v}^{2}k^{2}$ 17.7 mJ/cm 335 mJ/cm³ Piezoelectric u = 44 mJ/cm³ 4 mJ/cm^3 Electrostatic u = u = B $4 \, \mathrm{mJ/cm^3}$ 400 mJ/cm³ Electromagnetic

Practical

Governing

Source: H. Vocca, NiPS Laboratory, Dipartimento di Fisica, Università degli Studi di Perugia, Italy

Theoretical

COVENTOR

Vibration Energy Harvester Specifications

COVENTOR

Key Characteristics

- Operational frequency range :
 - Depends on application : ambient vibration harvesting => low frequency and broadband or tunable harvester
- Generalized ElectroMechanical Coupling
 - Material and technology choice
- Power density (W/cc)
 - Power to size compromise
- Energy management and storage
 - Different conditioning circuits depending how the energy will be used

Vibration Energy Harvester **Example Design**

Cantilever with mass :

Use of the d31 piezoelectric coefficient

Equivalent Model :

electric mechanic Rm Cm Co R Ri Lm DC/DC $P_{load, \text{max.}} = \left(\frac{F}{\Gamma}\right)^2 \frac{1}{2R_m} \frac{1}{1 + \sqrt{1 + \omega_m^2 R_m^2 C_0^2}}$ $R_{load,opt.} = \frac{\kappa_m}{\sqrt{1 + \omega^2 R^2 C^2}}$

COVENTOR

Design Options

parallel configuration

for use of d33

Electrodes: On sides of piezo layer

for d31 or interdigited combs on top

bimorph or multistack with series or

Piezoelectric stack: Unimorph,

© Coventor Inc. ООО "Евроинтех" 2012

Vibration Energy Harvester Simulation Challenges

FEA result is limited to power through a basic passive load

• Basic RLC circuit can be plugged to piezoelectric electrodes

Including diodes or transistors is impossible

 \Rightarrow Circuit simulator is needed for getting the real output power from the energy harvester complete system

COVENTOR

Coventor Design Flow

COVENTOR

© Coventor Inc. ООО "Евроинтех" 2012

Case Study : Holst Center cantilever VEH

Sputter deposition of Aluminum Nitride on a silicon wafer and glass packaging

Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system R Elfrink, M Renaud, T M Kamel, C de Nooijer, M Jambunathan, M Goedbloed, D Hohlfeld, S Matova, V Pop, L Caballero and R van Schaijk J. Micromech. Microeng. **20 june** 2010

Experimental Validation of Aluminum Nitride Energy Harvester Model with Power Transfer Circuit S. Matova, D. Hohlfeld, R. van Schaijk, C. J. Welham, S. Rouvillois Eurosensors XXIII conference 2009

© Coventor Inc.

Energy Harvesting circuit design

Piezoelectric Energy Harvester with conditioning circuit optimization 44

ООО "Евроинтех" 2012

COVENTOR

Verification and refinement

Packaging

Advantages for Piezoelectric Energy Harvesters

COVENTOR

MEMS+Cadence

- Optimum load analysis for different conditioning circuit
- Design of the Energy Storage System together with the harvester

CoventorWare

- Precise design of electrodes
- Stress map

Combination:

- Damping simulations
- Study of packaging effects

Coventor solutions for Pressure Sensor Design

CoventorWare™ 2012

Capacitive Pressure Sensor

Bottom glass cap

Back-side etch membrane doping

Device

Passivation metal trace

ООО "Евроинтех" 2012

Top glass cap sensing electrode

DESIGNER[™]: AutoMesher[™]

Effect of Silicon-Glass Stack

Z-displacement T=100 °C

Von-Mises stress T=100 °C

ANALYZER[™]: Capacitance

0-1 atm 25 °C no residual stress bias 5V

ANALYZER[™]: Zdisplacement

1 atm 25 °C no residual stress bias 5V

ANALYZER™: Von-Mises Stress

1 atm 25 °C no residual stress bias 5V

Effect of Residual Stress

capacitance 0-1 atm 25 °C bias 5V

_

residual stress: oxide100MPa(C); doped silicon 10MPa(C)

Effect of Residual Stress

Z-displacement 0-1 atm 25 °C bias 5V

– no residual stress

residual stress: oxide 100MPa(C); doped silicon 10MPa(C)

MemPZR finite element solver

 Stress mapped from mechanical mesh onto PZR mesh

ANALYSER[™] Keypoints

- Developers of MEMS and Micro-fluidic devices use CoventorWare ANALYZER solvers to simulate the physics required
- ANALYZER incorporates all the physical field solvers necessary to successfully analyze, understand and verify these devices
 - Well-Established Finite Element solvers for mechanics, thermal, electrostatic, piezoresistive and piezoelectric problems
 - MEMS specific finite and boundary elements
 - MEMS specific physics
 - Simulations run in a Job queue
 - Status monitoring
 - Multi-core support
 - 64 bit support
 - Powerful results viewer
 - Many options on rendering, data calculation, macro recorder

Coventor Solutions for MEMS Capacitive Microphone Design and Integration

Overview

Introduction

- Applications of Capactive MEMS Microphones
- A typical product spec and which specs be simulated
- Design and integration challenges
- An example showing use of Coventor's tools
 - Simulation sensitivity
 - Simulation of electro-mechanics
 - MEMS sensitivity noise analysis for SNR spec
 - Design optimisation to minimize noise

Applications

COVENTOR

MEMS Capacitive Microphones

Source: Yole Development

Spec sheet for Microphone

ADMP404

SPECIFICATIONS

 $T_A = 25^{\circ}C$, $V_{DD} = 1.8$ V, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

Table 1.

Microphone specs that can be simulated with Coventor tools

Parameter	Symbol	Tort	t Condi	tions	ommonte				Min	Typ	May	Unit
	Symbol	ies	conun	uons/c	onments				INITI	тур	widx	Unit
Directionality										Omni		
Constituity		14	1- 04 di						41	20	25	dDV
Sensitivity	CNID	IKF	12, 94 at	SPL					-41	-30	-35	dBA
Signal-to-Noise Ratio	SINK									02		
Equivalent Input Noise	EIN			FINI	1 .					32		dBA SPL
Dynamic Range		Derived from EIN and maximum acoustic input								88		aB
Frequency Response		LOW	/ freque	ncy –3	aB point					100		HZ
		Hig	h freque	ency -3	dB point					15		KHZ
	10025	Dev	liation li	mits fro	om flat respo	nse with	in pass	band		-3/+2		dB
Total Harmonic Distortion	THD	105 dB SPL									3	%
Power Supply Rejection Ratio $ PSRR $ 217 Hz, 100 mV p-p square wave superimposed on $V_{DD} = 1.8 V$								70		dB		
Maximum Acoustic Input		Pea	k							120		dB SPL
POWER SUPPLY												
Supply Voltage	VDD								1.5		3.6	V
Supply Current	ls										250	μA
OUTPUT CHARACTERISTICS												
Output Impedance	ZOUT									200		Ω
Output DC Offset										0.8		V
Output Current Limit										90		μA
Capacitive Load Drive	-		1000			1000			1000			pF
PREFILTER HEADROOM				280			400			560		g
CFSR @ 400 kHz				5			4			3		V/V
POWER SUPPLY (VDD)			4.75		5.25	4.75		5.25	4.75		5.25	V
Functional Range			3.5		6	3.5		6	3.5		6	V
Quiescent Supply Current	$V_{DD} = 5 V$			1.3	2		1.3	2		1.3	2	mA
TEMPERATURE RANGE			-40		+105	-40		+105	-40		+105	°C
						-						

Design and Integration Challenges

Architecture: Multi domain physics

• Mechanics, electrostatics, fluidics & electronics

Design and Integration Challenges

Co-simulation of:

Coventor MEMS+ for Cadence Virtuoso

MEMS+ Model

Sensitivity Simulation

• Fully coupled simulation between microphone and IC

COVENTOR

•Sensitivity,

- •d.c., a.c., transient, noise.
- Monte-Carlo, optimization
 - Enabled by parametric model

ElectroMechanical Device Simulation

 Microphone with perforated back plate using circular and arc shaped flexible plates with pressure loads and electrodes

(Perforation are not shown in the image)

Results of a Modal Analysis with Cadence or Matlab/Simulink

ElectroMechanical Detailed Design

11

ElectroMechanical Detailed Design

- Determine effect backplate stiffness
- Determine effect of non ideal anchor on diaphragm stiffness

MEMS Microphone noise sources

COVENTOR

MEMS Microphone noise sources

COVENTOR

MEMS+ Cavity Model

- The Cavity component is an add-on to all MEMS+ flexible plate models for Microphones
- Models the effect of a fluid trapped in a cavity underneath of above a flexible plate.
- Fluidic connector for the cavity pressure and an optional pressure connector for the external pressure
- The model supports the Cadence noise analysis

Flexible Plate Model

- The individual layers of each plate component are modeled by a <u>finite shell element</u> known as MITC (mixed interpolation of tensorial components)
- The approximation of the shell edges is defined by the number of mechanical connectors being used

 The number of mechanical connectors can be set in the parameters of the corresponding plate component

•Fully coupled simulation between microphone and IC

COVENTOR

- •Noise,
- •d.c., a.c., transient
- Monte-Carlo, optimization
 - •Enabled by parametric model

Advantages for Microphone simulation

Microphone model from MEMS+

- State of the art flexible plate and cavity model suitable for microphones
 - Mechanical and electrical non-linearity
 - Stress, stress gradient, inertial force, contact
 - Electrode perforations for fringing fields
 - Motion in 6 degrees of freedom
 - Flow compliance, resistance, intertance
 - Parametric
- Leverage 20 man years of model development
 - Physics and simulation performance

Microphone + IC model simulations in Cadence

- Fully coupled simulation between microphone and IC
 - d.c., a.c., transient, **noise**, sensitivity, Monte-Carlo, optimization

Validate, verify design details with FEA/BEM tools

Coventor Solutions for RF Switch Design and Integration

RF MEMS - A Variety of Applications

COVENTOR

MEMS Switches

- Transmit/Receive Duplexers (TDD)
- Band/Mode Selection
- Time-Delay for Phased-Arrays
- Antenna Diversity
- Reconfigurable Antennas

MEMS Filters (Resonators)

- Transmit/Receive Duplexers (FDD)
- Band-Select Filters
- IF Channel Filters
- Image Rejection
- RF Filter Bank
- VCO Stabilization
- Self-Filtering Mixers

MEMS Varactors

- VCO Tuning
- Variable Matching
- Variable Delay Lines
- Variable Filters

Micromachined Transmission Lines

- Filters / Diplexers
- Antennas
- Antenna Array Manifolds

MEMS Inductors

- Oscillator Tank Circuits
- LC Filters
- Bias & Matching Circuits

Challenges of RF MEMS

COVENTOR

Specialized Physics

- 3D electrostatics
- Electro-mechanical coupling
- Energy loss mechanisms
- Piezoelectric, magnetic,...
- Residual stresses
- Contact forces
- Sticking

Integration Challenges

- Different processes
- Different packaging
- MEMS co-design with IC and RF
- Different design tools

Coventor's Mission: Replace *build & test* with simulation

Example: RF MEMS Switch

COVENTOR

COVENTOR

IC designers and system architects require a MEMS device block for their schematic-based simulation environment of choice

Slide 5 ООО "Евроинтех" 2012

MEMS+ with Cadence

COVENTOR

CoventorWare: Coupled Electro-Mech. Field Solver

BEM solver for electrostatic force due to bias voltage -- uses surface mesh

FEM solver for solid mechanics displacement

-- uses volume mesh

MEMS + Innovator (3D Design Entry)

COVENTOR

MEMS+ Innovator

MEMS+ model in Cadence

System MEMS / IC co-simulation

Results in MEMS+ Pull-in Voltage

Results in MEMS+: Switching time

MEMS and System Design: MEMS+ for Matlab/ Simulink

Chris Welham Application Engineering Manager Coventor Paris

Outline

- MEMS+System and IC Challenge
- The MEMS + approach
- Accelerometer example in Simulink
- Using Matlab scripting
- Conclusions

Coventor MEMS+ for Matlab Simulink

Accelerometer Design Example

Single-axis accelerometer

- Differential capacitance
- Made with DRIE on SOI

Sigma-delta modulator

- 2nd order--> good stability
- Provides control & ADC
- Increases dynamic range and sensitivity

Define Materials and Process

 Material and process properties can be specified as constants, variables, or algebraic expressions

MEMS+ Material Database

Coventor MEMS+ -	C:/Users/Welham/MEMSp/SDAcceleromete	er/Accelerometer.	mm db 💶 🗋 🏹				
MaterialDataBase	ProcessEditor						
		Jo Leek Fee					
🔲 📴 🕅 💦 🏸							
SILICON							
DPK_Oxide0	Name	Value	Units				
	Visual Properties						
	Material Orientation : Euler Angles						
	Phi	U	Degrees V				
	Theta	0	Degrees 💙				
	Psi	0	Degrees 💟				
	Density	2.329e-15	kg/um^3 🚩				
	🖃 Elastic Constants : Isotropic 🛛 🛛 🕙						
	Isotropic						
	E	167000	MPa 🚩				
	nu	0.278					
	🗈 PreStress : In-plane Isotropic 🛛 👻						
	🗄 Stress Gradient in Z : In-plane Isotropic 🛛 😪						
	- Thermal Coefficient of Expansion						
	alpha	2.5e-06	1/K				
	Zero Stress Temperature	293.15	К 🕶				
	- Thermal Conductivity	undef	W/(m*K) 🔽				
	Specific Heat	undef	J/(kg*K) 🔽				
	Electrical Conductivity	1	S/m 💙				
	🛓 Piezoelectric Coefficients : Stress Coefficien 🌱						
	😟 Relative Permittivity : Isotropic 🛛 🗸 🗸						
	Piezoresistive Coefficients						
	Relative Permeability	undef					
	Coercivity	undef	A/m				
	Saturation Magnetization	undef	A/m				
	Variable		5×				
	I Name Value						
	ab Variables						
	293.15)					

MEMS+ Process Database

🍯 MaterialDataBase	erocessEditor	+ Innovator			
i 🗅 🧉 - 🗔 😽) 🥲 - 😕 🗄 🖶	14 6 X	aļe		
Name	Layer Name	Material Name	Material Color	Thickness	Item Library 🛛 🗗
😑 🛲 Substrate	Substrate	SILICON		50	🛓 🛲 Substrate
- 🚎 Stack Material1	BOX	DPK_Oxide0		3	🖨 "T: Group of Steps
- 🚎 Stack Material2	SOI_Device	SILICON		25	- 릈 Conformal She
👬 Straight Cut1					- 🚎 Stack Material
🛁 🚌 Delete1					- 🔜 Planar Fill
					- 🚌 Delete
					ି 👬 Straight Cut
					– 릈 Conformal Shell
					- 🚎 Stack Material
					- 💻 Planar Fill
					- 🚌 Delete
					🛛 츴 Straight Cut
• 10 ····					
<				2	
Variable					ð
Name Value					

Temperature "T" is defined as a variable then linked to material properties

 The MEMS device models are created with a library of parametric component generators for suspensions, plates, combs and electrical pads

 MEMS system design completed with addition of sigma-delta control loop using models from the Simulink library

Concept:

Use controller to hold proof mass steady for any acceleration, and use feedback control signal as output.

Force-feedback control of accelerometer

COVENTOR

Stability Simulations in Simulink

Stability Simulations in Simulink

Could do FFT of bitstream and attempt to interpret....

1-DOF model in MEMS+

Instead, load into *MEMS*+ to visually observe device behavior:

1-DOF model erroneously considers

1-DOF model erroneously considers the system stable ООО "Евроинтех" 2012

Controller excites suspensions into flapping uncontrollably

Multi-DoF model MEMS+

Component Design

Design Tradeoff: Sensitivity vs. Linearity

- Nonlinearities from mechanics and comb electrostatics
- Parameter sweeps computed in seconds

Component Design

Design Tradeoff: Sensitivity for Bandwidth:

• Not just mechanics or electrostatics: Whole system characteristic

System performance tradeoffs

Package Deformation

Package deforms due varying ambient temperature

- Deformation causes zero-*g* offset
- Can only predict zero-g offset with multi-DOF model
- Can the effect be minimized?

Design optimization using MATLAB and MEMS+

MEMS+-Matlab Interface (no Simulink)

- Drive MEMS+ from MATLAB
- 1. Open MEMS+ 3D schematic
- 2. Creating an instance of the analysis object: DC, AC, Modal
- 3. Setting the desired inputs
- 4. Calling compute() on object
- 5. Extract result data from object

•	Ed	litor - C:\matt\support\WaferMap\makeWaferMap.m*
File	Ę	idit Text Go Cell Tools Debug Desktop Window Help
12	18	🖞 🖬 🐇 🦄 🧐 🖤 🖏 📨 - 👬 🌩 🔶 ft, 횐 - 🗟 🛣 🖷 🏙 💷 🕮 Stack: Base 💡 ft,
-	5	8 - 1.0 + + 1.1 × ₩ ₩ 0
(1)	Thé	s file uses Cel Mode. For information, see the rapid code iteration video, the publishing video, or help.
24		%% load matrices of wafer data (C Youngs and Cpoly thick)
25	-	load WaferMaps.mat
26		
27		8% Compute device performance
28	-	MemsplusSystem('new','GyroscopeCapOutputs_WaferMap.3dsch');
29		<pre>%% get the nominal variable values</pre>
30	-	<pre>vars = vars2map(MemsplusSystem('getVariables'));</pre>
31	-	<pre>Epoly = vars('Epoly');</pre>
32	-	<pre>poly_thickness = vars('poly_thickness');</pre>
33		
34		%% initialize a Wafer map of resonant frequencies
35	-	C_freqsHzDrive = zeros(size(Cpoly_thick));
36	-	C_freqsHzSense = zeros(size(Cpoly_thick));
37		
38		<pre>% previously computed DC soln</pre>
39	-	load someInputs.mat
40		
41		%% Loop over process data
42	-	<pre>for k=1:length(Cpoly_thick(:))</pre>
43	7	<pre>vars('Epoly') = Epoly*(1 + C_Youngs(k)/100);</pre>
44	T	<pre>vars('poly_thickness') = poly_thickness*(1 + Cpoly_thick(k)/100);</pre>
45	-	<pre>Memsplus5ystem('setVariables', map2vars(vars));</pre>
46	-	<pre>abcd = MemsplusSystem('getSystemLinearization',0,states60,inputs);</pre>
47	1 and	[shapes, freqsHz] = computeModesSimple(abcd);
40	1	C_ireqsHzDrive(k) = freqsHz(1);
49	Ē	C_IreqsHzsense(K) = IreqsHz(Z);
50		<pre>% if (mod(k,20) == 1) % print k every 20 steps</pre>
51	-	disp(K);
52		vena
53	-	end

MEMS+-Matlab Interface (no Simulink)

COVENTOR

Matlab script

Sense Frequency

Drive Frequency ООО "Евроинтех" 2012
COVENTOR

MEMS+-Matlab Interface (no Simulink)

Vary suspension width and plot response

Enable MEMS Eco-System

 MEMS + parametric design format provides a new standard to facilitate the communication between the partners of the MEMS eco-system

MEMS device and ASIC Integration: MEMS+ for Cadence

Chris Welham

Application Engineering Manager

Coventor Paris

MEMS and ASIC Integration, Optimization issues: MEMS+ for Cadence Virtuoso

Chris Welham Application Engineering Manager Coventor Paris

COVENTOR

Coventor MEMS+ for Cadence Virtuoso

Design and Integration Solutions

Coventor's Value

MEMS Multi-Physics: mechanical + electrostatic + IC

- With complex geometry
- With Linear and non-linearity coupled physics

COVENTOR esign and Integration Challenges

Coventor's Value

• Speed vs accuracy

ООО "Евроинтех" 2012

Accuracy

Cadence Virtuoso Cell Generation

 The 3D Innovator design is imported into the Cadence Library Manager using the MEMS+ import tool

+ Coventor MEMS+ - C:/source/memsplus/trunk/	/src/MEMSplus/QA/InnovatorSchematics/DLM.3dsch		
🗅 😅 🕶 🔑 📨		3	
😒 MaterialDataBase 🛛 🚅 ProcessEditor 🛛 🕂 Inno	💙 Library Manager: WorkArea: /l	home/gunar/Cadence610 🗕 🗖 🗙	
_ B 📽 रू कि 🖓 🖓 🖓 🖓 🖉 📕			
Components B ×	<u>File Edit View D</u> esign M	anager <u>MEMS+ H</u> elp cadence	
Components Mirror DichtTundenDeen		Import Innovator 3D Schematic	
Right forsionBeam Eeft TorsionBeam	Show Categories	Show Croate Tech Library from Process	
GrightTorsionAnchor GrightTorsionAnchor GrightTorsionAnchor		Cleate Tech Library Itolii Process	
BottomElectrodeRight BottomElectrodeLeft	Library — C	iell <u>R</u> efresh selected cell	
		Options	
Variable & X	MEMSFoundryTechLib	11	
Name Value	MEMSFoundryTechL		
ab Variables	MEMSLib		Open file
- Orientation 45	US_8ths		,
- _e ≊ OriginX 0 ≅ alpha 0	ahdlLib	Look in: 🎁 /home/srouvill/source/memsplus/trunk/s	src/MEMSplus/QA/InnovatorSchematics 🧧 🔘 🎦 😁 📰 🗐 🗌
e beta 1e-06	analogLib 🛛 🖌	-	
	basic	Name Size Typ	be Date Modified
"T" Yoke "T" Anchor	cdsDefTechLib	ButterflySWA.3dsch 377 KB 3dsch Fi	ile 19 Mar 2010 11:55:59
		Capacitor.3dsch 93 KB 3dsch Fi	lle 19 Mar 2010 11:55:59
		CUPCapacitor.Joson J04 KB Joson Fi	ile 19 Mar 2010 11:55:59
	~ Messages	DIR 3dech 278 KB 3dech Ei	ile 19 Mar 2010 11:55:59
		DoubleMassGvro 3dsch 350 KB 3dsch Fi	ile 19 Mar 2010 11:55:59
	Log file is "/home/gunar/Cad	er 🗈 Flowers.3dsch 427 KB 3dsch Fi	ile 19 Mar 2010 11:55:59
		Gvroscope.3dsch 165 KB 3dsch Fi	ile 19 Mar 2010 11:55:59
		📑 Gyroscope BeamPath 129 KB 3dsch Fi	ile 19 Mar 2010 11:55:59
		📑 📑 Gyroscope_Perforatio 165 KB 3dsch Fi	ile 19 Mar 2010 11:55:59
		📕 📑 Gyroscope_SplitComb 171 KB 3dsch Fi	ile 19 Mar 2010 11:55:59
		🗋 Pendulum.3dsch 19 KB 3dsch Fi	ile 19 Mar 2010 11:55:59
		B DistoSidoWollAngleTe 235 KB 2deeb Fi	ilo 12 Apr 2010 00.41.21
		File name: DLP.3dsch	Open
		Files of type: MEMS+ schematic (* 3dsch)	Cancel

Parametric Cell Views

 The *MEMS* + import tool automatically creates a parametric layout and schematic view

Virtuoso Cell Parameters

 The created cell views features all parameters that were exposed in *MEMS*+

Virtuoso® Layout Suite L Editing; I	DLPLib DLP layout	+ Coventor MEMS+ - C:/source/memsplus/trunk/src/MEMSplus/QA/InnovatorSc.			
Launch File Edit View Create Verify Connectivity	<u>O</u> ptions <u>T</u> ools <u>W</u> indow <u>H</u> elp	🗅 🚰 🔻 🔑 📨			
🎦 🗔 🤊 🥐 💠 🗅 🖾 🗙 🕦 😫		MaterialDataBase 🚽 🚝 ProcessEditor 🕂 🕂 Innovator			
🔩 🖏 🍰 🎦 - 🕸 💡 😤 💽 Sela	ct 🕻 Edit Object Propertie] D 🗳 ▼ 🗔 🛛 🭳 ▼ 🖉] 🖧 🇞 🚷] 🛧 🖻 ⊀ 🖪 × 4	e = 11		
	Apply To Only curre	nt 🔽 instance 🔽		Components 🔮 × 📗 🔀 💠 🗛 🖉 🖧 🖧 🖏	🛛 🔐 🗛
	Show 🗌 system	🗹 user 🗹 CDF		🖻 📬 Components	
	Browse	Reset Instance Labels Display		E - Right TorsionBeam	
	Property	Value	Display	Et TorsionBeam Et TorsionAnchor	
	Library Name	DLP	off 🔽	EttorsionAnchor	
Virtuoso® Symbol Editor XL Editing: DLPLib DLP symbol	Cell Name	DLP	off	BottomElectrodeLeft	
Equilibri The Fair Mew Cleare Check Officius Window Help	d View Name	symbol	off		
È lư ⊑, ⊕ l' ¤ × 0 ¤ ≶ ∢, Ϥ ۹	Instance Name	11	value 🔽	Variable 8 ×	
Image: State of the state	User Property partName User Property partName CDF Parameter T Orientation OriginY OriginX alpha beta MirrorSize TorsionBeamThickness Scene 20fileBasename SuggestScaling	Add Delete Modify Master Value Local Value DLP Value 293.15 45 PPar ("Y") pPar ("Y") pPar ("X") 0 1e-06 17 0.0635 orSchematics/DLP.3de.m" no Celler	Display off S off S Display off S off S off S off S off S off S off S off S off S off S	Name Value Value A Diversibles Crientation 45 Crientation	VENI

MEMS Device Schematic

 The MEMS designer adds sources to the exposed electrical pins and confirms the device performance running DC, AC and transient simulations

MEMS Device Simulation

 Simulation results can be loaded back into *MEMS* + and animated in the 3-D canvas

SRAM Memory Cell Design

• The IC designer, meanwhile, creates a schematic of the SRAM memory cell underneath each mirror...

Complete Pixel Cell

 The CMOS SRAM cell can in turn be connected to the mirror to assemble the complete pixel cell

Mirror Array Schematic

 The pixel cell is replicated to form an array and connected to the driving electronics

Hierarchical symbol of a DMD mirror with memory cell

Cadence Virtuoso schematic of memory cell

Mirror Array Simulation

 The complete mirror array can now be simulated with the Virtuoso simulators: Spectre, UltraSim or APS

Accelerometer with ΣΔ Feedback Loop

 MEMS + generated accelerometer model with ΣΔ force feedback loop in Cadence Spectre:
Plate Displacement

Conclusions

MEMS+

- Device design via state-of-the-art non-linear FEA models
 - Electrostatics
 - Mechanical and electrical non-linearity
 - Stress, stress gradient, inertial force, contact
 - Motion in 6 degrees of freedom
 - Parametric
- Access 30 man years of model development
 - Physics *and* simulation performance
- Cadence available for gate level simulations
- Leverage all the benefits of Matlab & Simulink for system level design
 - Toolboxes
 - Scripting