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Wireless applications, particularly with
multiple resonances, put new demands
on antennas pertaining to size, gain,

efficiency, bandwidth, and more. One promising
approach in this regard is to use fractal geome-
tries to find the best distribution of currents
within a volume to meet a particular design
goal. Within this world of complex geometries,
engineers need the most efficient method using
the most effective tool. 

CST MICROWAVE STUDIO® (CST MWS)
from Computer Simulation Technology is a time-
domain tool capable of analyzing broad-band
structures with multiple resonances. It was used
to study these fractal geometries using the
example of a Sierpinski Triangle Antenna. The
simulation demonstrated the ability of CST
MWS to match the measured response of this
broadband device in a single simulation, while
also providing control over complex geometry
construction with the built-in VBA macro editor.

Sierpinski Triangle antenna
A fifth iteration Sierpinski Gasket (Triangle)

Monopole was simulated using the finite inte-
gration technique (FIT) [1]. Five resonances are
clearly shown, illustrating that the number of
resonances for this antenna increases with the
band number of this fractal
shape [2]. Surface currents
demonstrated the published
patterns mimicking frequen-
cy dependent arrays of bow-
tie elements. Simulated
results for S11 magnitude
matched measured results
within anticipated normal
variations across the band. 

The first reference to having used a
Sierpinski Triangle (or gasket) as an excited
antenna was made in 1995 [3] by Cohen. A true
Sierpinski Triangle is not a surface, but starts
with an initiator triangle and a generator trian-
gle. The generator is applied, in its various
forms, to the initiator to infinity. The equations
governing the mapping of the three vertices
from one two-dimensional space to another two-
dimensional space are of the form [4]:

(1)

In reality, such equations would lead to
19,683 points, with some redundancy, by the
ninth iteration! A much simpler way to do it
would be to use progressively larger groupings.
In this way, the complexity of building such a
shape could be greatly simplified (see Figure 1). 

Structures up to ninth iteration have been
built, but not analyzed, using 6,561 elements. 
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▲ Figure 1: Five stages of making a fifth iteration Sierpinski Triangle.
The first iteration (band number equals one) is formed by the solid
bow-tie triangle. Subsequent images are scaled by 1/2.
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Fractal dimension has been described as [4]:

where N = non overlapping copies of the whole scaled by
γ. In this case, going back to the original definition of the
structure, N = 3 with γ = ½ for a dimension of 1.585.

That means, in the pure case with the generator tri-
angle being applied to the initiator triangle to infinity
(see Equation (1) and Figure 2) the self-symmetry is
three-fold and the scaling is ½. It has been suggested
that since

there may be a connection between the dimension of a
fractal, and its efficiency as a radiator, but this has never
been quantified. It has been shown, however, qualita-
tively valid. Also, the Euclidian formulation of the min-
imum radiation Q may not apply to fractals [4]. The
Euclidian formulation for this goal could be taken as
that expressed by the following equations. The mini-
mum radiation Q for circularly polarized waves [5]:

and the minimum radiation Q for linear waves:

where k is the wavenumber 

and a is the radius of a sphere superscribing the anten-
na. In general, “the relationship between radiation Q
and maximum achievable bandwidth is not straightfor-
ward” [5]. However, if Q >> 1, then BW = f / Q is a good
approximation. If one is so successful that Q >/> 1, or
even Q < 1, then this simple relation does not hold. 

Once it has been constructed on its substrate, and a
ground-plane added beneath, the resulting antenna is
fed between the lower vertex and ground, with reflection
coefficient results similar to a bow-tie monopole of the
same overall dimensions, or individual subgasket dimen-
sions [2]. By the fifth iteration there are 81 triangles,
123 vertices and 243 edges to solve, with more than four
wavelengths in the longest dimension. 

Modeling the antenna
Figure 3 illustrates measurement sensitivity. A ±0.15

variation in input resistance yields an infinite difference
in S11 values, limited in the plot to 60 dB maximum by
the resolution of the calculation. 

At the higher frequencies such as 16 GHz on an
antenna with a fundamental in the MHz range, second-
order effects become significant. There are many
unknowns at the feedpoint, such as edge-effects, para-
sitics, feed-geometry, and so forth, and the fact that
these are not quantified does not mean they are not
influencing the result. 

Comparing measured results
Getting to the measured data, a fifth iteration fractal

antenna was published in the IEEE Transactions on
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▲ Figure 2. The second iteration result (left) of subtracting
the generator triangle (right) from the initiator triangle. 

▲ Figure 3. Measurement sensitivity showing S11 variation
due to ±15 percent uncertainty in the load resistance.
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Antennas and Propagation [2]. See Figure 4
for these results as compared to the results
from CST MWS. 

It seems significant that the number of res-
onances increases with the number of itera-
tions. The definition for first iteration here is
the same used by Mittra, Puenta, et al. In
some ways, it would make more sense to define
the zeroth iteration as the one prior to the
application of any generator to the initiator,
eschewed here for consistency. The scale
between resonances is approximately 2, except
between the lowest two frequencies. It is
thought that this difference is due to self-sym-
metry truncation at the low end [2]. This
means that the structure is symmetric with
respect to itself, or looks the same at any and
all scales that fill the field of view as the order
increases. But, as the order decreases, the frac-
tal looks less and less like itself, until the second and
first iterations are compared. Self-symmetry about the
feedpoint along with origin symmetry — consider the
dipole form — have been shown to be requirements for
frequency independence [6]. Broadbandedness is anoth-
er issue, defined by self-complementarity [1]. To go into
this subject any further would be beyond the scope of
this short article.

The measured antenna was made of copper-clad sub-
strate with a relative permittivity of 2.5. The CST MWS
simulation was made using solid perfect electric conduc-
tor (PEC) on a substrate with the same permittivity.
Also, the measured antenna was on an 800 × 800 mm
flat metal plate [2], while the CST MWS simulation was
run with an infinite ground plane. These differences cre-
ated a faster simulation. Using copper for the metal in
both the antenna and the ground plane did not appre-
ciably change the result. There did not seem to be a need
for increasing the run-time in the absence of values for
specific structural changes to the feed geometry. It was
noticed during simulation that the antenna driving
point impedance could be “tuned” by altering the gap
between the feed point at the lower vertex, and ground.
A final value of 1 mm was used with good results. 

An important point may be observed within the
example of Figure 5. Although in the original article [2]
the antenna was not fed at its driving point impedance
(ca.150 [Ohms]), nevertheless above a certain lower-
limit frequency, the impedance remains within the con-
fines of a circle indicating that the antenna is becoming
very broad-band. By adjusting the driving point imped-
ance, it is possible to move this circle into concen-tricity
with the origin. The maximum attendant VSWR would
be around 3, in this case.

The current distribution at 3.51 GHz has been plot-
ted (see Figure 6). In this case the current maxima
appear as would be expected for the third harmonic

(with the first harmonic defined as equal to the funda-
mental). In the corresponding radiation pattern, the
characteristic three-lobed farfield pattern of an imped-
ance-matched monopole is displayed, as expected [2]
(see Figure 7).

Conclusion
A fifth iteration Sierpinski Gasket (Triangle)

Monopole was simulated with an FIT-based code (Finite
Integration Technique) using CST MICROWAVE STU-
DIO, which is capable of analyzing broad-band struc-
tures with multiple resonances. The simulation demon-
strated the ability of CST MWS to match the measured
response of this broadband device in a single simulation,
while also giving the engineer control over complex

▲ Figure 4. S11 simulated versus measured data.

▲ Figure 5. The simulated Smith Chart impedance.
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geometry construction with the use of the built-in VBA
macro editor. The use of a structure made up entirely of
triangles proves that the Perfect Boundary Approxima-
tion® (PBA) technique (see below) works very well in
this case. The far-field pattern shows the expected
three-lobed shape.

About CST MICROWAVE STUDIO
CST MICROWAVE STUDIO uses FIT, a one-to-one

translation of Maxwell’s equations into a discrete space
formulation without simplification or specialization.
This theoretical foundation has been developed dynami-

cally over more than 25 years. The explicit time domain
approach is particularly well suited to this type of anten-
na. The mesh cell pattern is strictly rectangular 3-D,
non-uniform and orthogonal. Typical errors introduced
by staircase meshing are avoided through the system’s
Perfect Boundary Approximation® (PBA), which in CST
MWS’s Version 4 allows for “split cells” in which the
fields on either side of a good conductor are isolated by
the metal layer. The boundary between two dielectrics,
or between a dielectric and a conductor, can be found by
this method without resorting to other high-overhead
meshing methods. 

The user interface is based
on the latest ACIS-kernel,
making it as easy to enter
structures as with a CAD pro-
gram. CST MWS employs the
VBA language (Sax Basic)
comprising the standard lan-
guage elements along with a
couple of CST-specific lan-
guage extensions. These
macros are very powerful
aides to the simulation
engine, basically in two ways.
Control tasks, used for simu-
lation controls, are not stored

▲ Figure 6. Current distribution. ▲ Figure 7. Farfield pattern.

▲ Figure 8. Illustrations of vertical scaling and variations in the feed angle showing a
user-friendly parameterization of the model.
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in the history list. The history list is a
complete description of the structure,
boundary conditions, symmetry planes,
frequency range of interest, meshing
parameters, in short, simulation inputs.
Structure modeling tasks, on the other
hand, are stored within the history list.
Such a macro is illustrated below, and can
be used to generate useful variants. 

Various schemes have been tried for
skewing the resonant frequency, giving
the designer more control over the result
[4]. A straightforward macro can be writ-
ten to reproduce these designs, which
vary either in vertical scaling or included
angle at the feed point. By combining
these two variables into one macro, both
can be varied at will reproducing any
combination within reasonable bounds
(see Figure 8). This macro is available to
customers and testers upon request.      ■
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▲ Figure 9. The mesh and user interface of CST MICROWAVE STUDIO using
magnetic symmetry.


