

- Mixed VHDL / Verling Simulation
- Co-Simulation for C/C++ and SystemC[™]
- Advanced Design Debugging
- Assertion-based Verification
- Hardware Acceleration

Система моделирования Riviera является последним решением для высокопроизводительной верификации проектов интегральных схем. Применение подхода «лучший в своем классе» дало наиболее гибкую платформу для VDHL, Verilog и смешанного моделирования. Система Riviera идеально подходит для отладки проектов на уровне регистровых передач, длительного регрессивного тестирования, временного моделирования, методологий групповой разработки и включает в себя непосредственную связь с аппаратным ускорителем посредством Riviera-IPT.

МОДЕЛИРОВАНИЕ НА СМЕШАННЫХ ЯЗЫКАХ

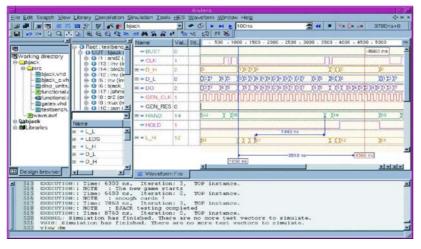
Система Riviera поддерживает разработку наиболее сложных проектов интегральных схем, состоящих из проектных блоков на языках VHDL, Verilog, C/C++, SystemC и списков цепей в формате EDIF, обеспечивая их полную интеграцию на основе общего ядра моделирования.

СОВМЕСТНОЕ МОДЕЛИРОВАНИЕ С С/С++ И SYSTEMC

Новые методы проектирования продолжают вести к сокращению времени верификации. Система Riviera включает в себя возможность совместного моделирования тестов и проектных модулей C/C++ и SystemC вместе с модулями VHDL и Verilog. Система моделирования непосредственно соединяется с компилятором C, а комбинированные результаты моделирования могут просматриваться в редакторе временных диаграмм.

РЕЖИМЫ ОПТИМИЗАЦИИ МОДЕЛИРОВАНИЯ

Система Riviera может быть сконфигурирована для оптимизации моделирования и повышения производительности как в графическом, так и в фоновом режиме моделирования. Средства управления производительностью включают в себя:


- Оптимизированный режим компиляция и моделирование проектов на языке Verilog и смешанных VHDL/Verilog проектов вместе в тестами.
- Управление разбросом памяти распределение под проект только памяти, требуемой в процессе верификации.
- Управление выключенными блоками маскирование блоков проекта, которые не контролируются во время моделирования.

ВЕРИФИКАЦИЯ НА ОСНОВЕ УТВЕРЖДЕНИЙ

Использование верификации на основе утверждений является ценным дополнением в процессе проектирования, интеграции, моделирования системы и передачи проекта на изготовление, обеспечивая лучшее (внутреннее) понимание функционирования проекта. Утверждения ускоряют процесс отладки, сокращая количество итераций верификации, улучшают возможности повторного использования проекта и передачи его контрагентам, и могут также использоваться в аппаратном ускорителе (Riviera-IPT). Поддержка стандартов верификации на основе утверждений включает в себя:

- Утверждения OpenVera (OVA)
- Язык определенных свойств (PSL)
- Библиотеки открытой верификации (OVL)

ВЫСОКОПРОИЗВОДИТЕЛЬНЫЙ РЕДАКТОР ВРЕМЕННЫХ ДИАГРАММ

Редактор временных диаграмм использует несколько методов компрессии для обработки большого объема данных моделирования и ускорения визуализации временных диаграмм. Помимо высокой производительности, редактор также включает в себя несколько функций, которые упрощают верификацию проектов, позволяя производить более быстрое и точное редактирование и анализ

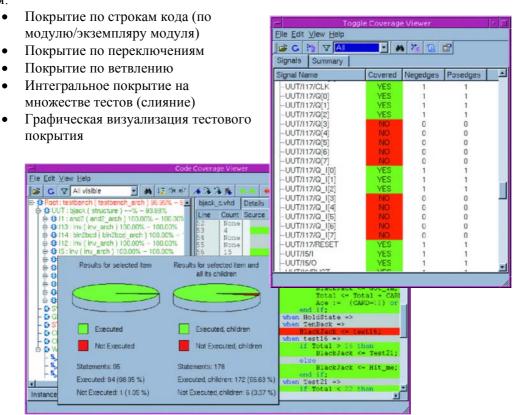
результатов моделирования. Функции редактирования включают в себя возможность модификации значений и цепей, которые затем могут быть применены к последующим прогонам моделирования. Дополнительные функции включают в себя:

- Поддержку форматов VCD и расширенный VCD
- Показ источников событий
- Сравнение временных диаграмм
- Управление стимулятором
- Просмотр списков (.lst)

ИНТЕРФЕЙСЫ ІЕЕЕ

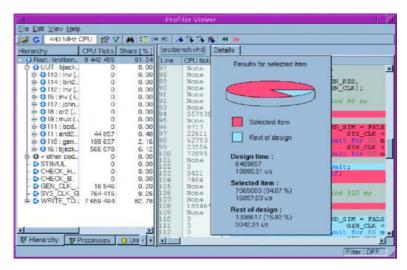
Система моделирования Riviera включает в себя интерфейсы PLI, VPI и VHPI, которые являются стандартами IEEE, для связи с другими средствами верификации в маршруте проектирования. В дополнение к стандартным интерфейсам, Riviera также включает в себя оптимизированную интеграцию с отдельными средствами проектирования стратегических партнеров компании Aldec.

ПОДДЕРЖКА МНОГОМАШИННЫХ СЕРВЕРНЫХ СИСТЕМ

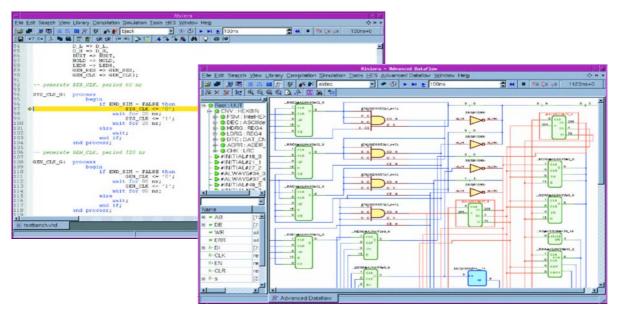

Система Riviera совместима со всеми методологиями управления загрузкой многомашинных серверных систем, конфигурируемых для операционных систем UNIX, Linux или NT. Проекты могут быть перегружены для моделирования с локальной рабочей станции или персонального компьютера в централизованное место, высвобождая локальный компьютер для работы с другими частями проекта.

КОДИРОВАНИЕ БИБЛИОТЕК

Система Riviera предоставляет средства компрессии и кодирования исходных кодов на языках VHDL и Verilog для безопасной упаковки и обмена проектными модулями между членами рабочей группы локально или по сети.


ТЕСТОВОЕ ПОКРЫТИЕ

Анализ тестового покрытия обычно дает большую нагрузку на системы моделирования и замедляет сам процесс моделирования. Поскольку эта функция встроена непосредственно в систему Riviera, связанные с этим накладные расходы значительно сокращаются. Тестовое покрытие в системе Riviera включает в себя:


ПРОФИЛИРОВАНИЕ ПРОЕКТА

Проектные блоки, занимающие большое время моделирования, могут быть легко определены с помощью функции профилирования проекта. За счет идентификации этих блоков и оптимизации тех частей проекта, которые увеличивают время моделирования, общее время моделирования проекта может быть существенно уменьшено. Моделирование может быть очень неэффективным без возможности увидеть характеристики проекта и установить деградацию моделирования.

МОЩНЫЙ РЕДАКТОР

Текстовый редактор языков описания аппаратуры высокого уровня интегрирован с компилятором и ядром моделирования для облегчения отладки, позволяя делать установку точек останова и быструю локализацию ошибок компиляции.

АППАРАТНОЕ УСКОРЕНИЕ RIVIERA-IPT

Система Riviera может быть расширена дополнительным патентованным аппаратным ускорителем Riviera-IPT, который обеспечивает большую скорость и эффективность моделирования за счет соединения вместе многих различных элементов проектирования и верификации в единую ускорительную платформу системного уровня. Эта платформа соединяет в себе программное моделирование для смешанных описаний VHDL, Verilog, утверждений, совместное моделирование с кодом C/C++, SystemC и аппаратное ускорение, все оптимизированные и включенные в архитектуру общего ядра. Ключевые особенности включают в себя:

- Ускорение моделирования кода на уровне регистровых передач в 10-50 раз
- Не требуется длительного обучения или выполнения предварительных установок
- Поддержка сетевых и групповых режимов работы
- Масштабируемая архитектура
- Высшее качество проектирования
- Поддержка методологии многомашинных серверных систем

МЕТОДОЛОГИЯ RIVIERA-IPT

Традиционные методологии моделирования требуют от пользователя повторного моделирования ранее проверенных блоков с добавлением каждого нового блока или с каждой новой итерацией проекта, делая процесс верификации медленным и неэффективным. Однако, так как технология дифференциального создания прототипа (Incremental Prototyping Technology - IPT) предусматривает вывод всех отверифицированных блоков в аппаратуру, Riviera-IPT программно моделирует только вновь добавляемые блоки, существенно ускоряя процесс моделирования.

ТЕХНИЧЕСКАЯ ПОДДЕРЖКА

Компания Aldec предоставляет наивысший уровень сопровождения пользователей в промышленности. Годовая поддержка включает в себя неограниченную техническую поддержку по всему миру, ежеквартальные поставки новых версий программного продукта и его обновлений, подписку на наш информационный бюллетень и конференции, включая доступ в режиме онлайн к нашей библиотеке технической поддержки.

РАСШИРЕННЫЕ СРЕДСТВА ОТЛАДКИ

Система Riviera дает возможность редактирования и отладки VHDL, Verilog и смешанных проектов, выполнение отладки исходного кода в режиме онлайн или после моделирования с использованием нескольких расширенных функций, которые предоставляют разработчикам полный контроль над исходным кодом и ускоряют процесс отладки проектов.

ПРОВОДНИК СИГНАЛОВ (Только для VHDL)

Проводник сигналов позволяет разработчику контролировать и запускать сигналы из любого блока VHDL. При этом не требуется, чтобы сигналы были разведены через интерфейсы блоков или объявлены в глобальных пакетах. Это особенно полезно при разработке тестов и верификации проектов.

ПРОСМОТР СОСТОЯНИЙ ПАМЯТИ

Система Riviera упрощает процесс отладки, показывая содержимое памятей, определенных в проекте, как для VHDL, так и для Verilog описаний. Запоминаемые значения могут наблюдаться во время моделирования в окне графической визуализации памяти.

Х-ТРАССИРОВКА

X-трассировка позволяет разработчику отслеживать и просматривать события, вызывающие неожидаемые выходные значения во время моделирования. Обращение к этой функции выполняется через окно анализа потока данных в соединении с редактором временных диаграмм. Использование X-трассировки существенно сокращает общее время отладки.

ПРОГРЕССИВНЫЙ ПОТОК ДАННЫХ

Эта функция дает возможность просмотра и отладки проекта в графическом виде и полезна для исследования его физической связанности в виде блок-диаграмм как для VHDL, так и для Verilog описаний. Она непосредственно связана с автономным редактором временных диаграмм Riviera и позволяет использовать курсор для прокрутки временой шкалы моделирования вперед и назад для наблюдения в это время аннотированных значений сигналов на блок-диаграмме.

ОПЕРАЦИОННЫЕ СИСТЕМЫ

- Sun Solaris (7, 8 и 9)
- Linux (ядро 2.4)
- Windows NT/2000/XP

СИСТЕМНЫЕ ТРЕБОВАНИЯ

- Компьютер, совместимый со Sparc или Pentium PC
- 256Мбайт физической памяти, рекомендуется 512Мбайт
- 100 Мбайт свободного дискового пространства (для полной инсталляции)

ПОДДЕРЖИВАЕМЫЕ СТАНДАРТЫ

- VHDL 1076-87/93
- Verilog 1364-95/2001
- VITAL 1076.4-95/2000
- SDF 1.0, 2.0 и 3.0
- SystemVerilog

Интерфейсы

- Tcl/Tk
- PERL
- PLI/VPI
- VHPI
- CHPI

ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ

Моделирование	
Смешанное моделирование	Общее ядро моделирования для VHDL, Verilog и EDIF
Моделирование в фоновом режиме	Запуск моделирования из системной оболочки без графического интерфейса
Управление разбросом памяти	Уменьшение требований к системной памяти во время моделирования
Случайные стимулы	Генерация случайных тестовых воздействий для моделей
Оптимизация Vital	Повышение производительности со встроенными моделями и библиотеками Vital
VCD и расширенный VCD	Поддержка файлов в форматах VCD и расширенный VCD
Кодирование и компрессия	Сжатие и защита ІР-блоков для обмена в рабочих группах

Расширенная отладка	
Поддержка утверждений	Спецификация проекта для выражения системных ограничений
Отладка исходного кода	Пошаговое выполнение, установка точек останова в коде
Точки останова для сигналов	Установка точек останова на события, транзакции или значения
Прогрессивный поток данных	Графическое представление сигналов/цепей для процессов во время моделирования
Х-трассировка	Отслеживание и просмотр событий, вызывающих неожидаемые выходные сигналы
	во время моделирования
Редактор временных диаграмм	Просмотр результатов в прцессе моделирования или загрузка диаграмм из файлов
Сравнение временных диаграмм	Автоматическое сравнение двух временных диаграмм и выделение различий
Просмотр источников событий	Прямое позиционирование на оператор HDL, вызывающий событие
Проводник сигналов	Контроль и управление сигналами VHDL и Verilog в любом месте иерархии проекта
Просмотр состояний памяти	Просмотр состояний больших массивов памяти

Тестовое покрытие	
Покрытие по строкам кода	Покрытие по каждому модулю или экземпляру модуля в исходном коде
Слияние тестов	Слияние результатов по нескольким прогонам моделирования
Покрытие по переключениям	Измерение активности проекта по изменению логических значений сигналов
Анализ тестового покрытия	Сохранение данных и их анализ в автономном

Пользовательский интерфейс	
Броузер проекта	Интерактивный интерфейс управления библиотеками, моделированием и отладкой
Профилирование проекта	Показывает число тактов процессора для каждого исполняемого оператора
Структура проекта	Анализ структуры проекта, просмотр сигналов, портов и переменных
Редактор языков	Редактирование кода HDL, продвижение по коду во время моделирования
Управление библиотеками	Просмотр содержимого и назначения библиотек
Регенерация библиотек	Обновление библиотек без перекомпиляции при переходе на новые версии
Окно списков	Просмотр результатов в формате списков; сохранение в файлы списков

Внешние интерфейсы	
Интерфейс VHPI	Стандартный интерфейс для доступа к моделям VHDL при моделировании
Verilog PLI и VPI	Стандартный интерфейс IEEE для доступа к моделям Verilog при моделировании
Novas – Debussy	Интерактивный или фоновый режимы для новой структуры базы данных FSDB
Verisity - Specman	Прямой интерфейс в графическом и фоновом режимах для построения тестов с
verisity specimen	использованием языка «е»
Denali – SOMA	Интерфейс PLI к моделям быстрой памяти для VHDL и Verilog
Cadence - Testbuilder	Доступ к тестовым библиотекам С/С++ через интерфейс СНРІ высокого уровня
Summit Design – Visual Elite	Интерактивная спецификация проекта и отладка через интерфейсы API, VHPI и PLI
Synopsys - SWIFT	Подстановка скомпилированных поведенческих моделей в проект HDL; Включает расширения MemPro, DesignWare и LMTV
SystemC	Совместное моделирование SystemC c VHDL/Verilog

Аппаратное ускорение	
IPTv2000	Аппаратный ускоритель Riviera-IPT емкостью 2 миллиона вентилей ПЛИС
IPTv6000	Аппаратный ускоритель Riviera-IPT емкостью 6 миллиона вентилей ПЛИС
IPTv12000	Аппаратный ускоритель Riviera-IPT емкостью 12 миллиона вентилей ПЛИС

ООО "ЕвроИнТех" 109387, Россия, Москва,

ул. Летняя, д. 6

Телефон/факс: +7-(495)-749-45-78

E-mail: sales@eurointech.ru http://www.eurointech.ru